Selektives Elektronenstrahlschmelzen von speziellen Legierungen
Es wird das Potential schwierig zu verarbeitender Legierungssysteme für die Prozessierung mittels SEBM eruiert. Dazu gehören z.B. eigentlich nicht schweißbare Nickelbasislegierungen oder spezielle Kupferlegierungen. Es bestehen aber auch Erfahrungen in der Verarbeitung von Titanlegierungen, insbesondere für medizinische Anwendungen, Titanaluminiden und Stählen.
Es werden die materialwissenschaftlichen und reaktionstechnischen Grundlagen zur simultanen Erzeugung von Trägermaterial und katalytischer Funktion strukturierter Reaktoren aus Raney-Cu mittels SEBM erforscht. Der aktive Katalysator wird dabei aus der SEBM-gefertigten Struktur durch Auslaugung erzeugt, so dass geometrische Restriktionen der aufwändigen Beschichtungsverfahren zur katalytischen Funktionalisierung wegfallen.
Ansprechpartner:
Prof. Dr.-Ing. habil. Carolin KörnerPublikationen:
Structure Design of Soft Magnetic Materials using Electron Beam‐based Additive Manufacturing
In: Advanced Materials (2023)
ISSN: 0935-9648
DOI: 10.1002/adma.202300837 , , :
A novel approach for powder bed-based additive manufacturing of compositionally graded composites
In: Additive Manufacturing 56 (2022), Art.Nr.: 102916
ISSN: 2214-7810
DOI: 10.1016/j.addma.2022.102916 , , , :
Electron beam-based additive manufacturing of Fe93.5Si6.5 (wt.%) soft magnetic material with controllable magnetic performance
In: Scripta Materialia 210 (2022), Art.Nr.: 114460
ISSN: 1359-6462
DOI: 10.1016/j.scriptamat.2021.114460 , , , , :
In-situ aluminum control for titanium aluminide via electron beam powder bed fusion to realize a dual microstructure
In: Additive Manufacturing 59 (2022)
ISSN: 2214-7810
DOI: 10.1016/j.addma.2022.103132 , , , :
Practically applicable water oxidation electrodes from 3D-printed Ti6Al4V scaffolds with surface nanostructuration and iridium catalyst coating
In: Electrochimica Acta 417 (2022), S. 140308
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2022.140308 , , , , , , , , , :
Impact of the Power-Dependent Beam Diameter during Electron Beam Additive Manufacturing: A Case Study with γ-TiAl
In: Applied Sciences 12 (2022), Art.Nr.: 11300
ISSN: 2076-3417
DOI: 10.3390/app122111300 , , , :
3D-Printed Raney-Cu POCS as Promising New Catalysts for Methanol Synthesis
In: Catalysts 12 (2022)
ISSN: 2073-4344
DOI: 10.3390/catal12101288 , , , , , :
Microstructure analysis and mechanical properties of electron beam powder bed fusion (PBF-EB)-manufactured gamma-titanium aluminide (TiAl) at elevated temperatures
In: MP Materials Testing 64 (2022), S. 636-646
ISSN: 0025-5300
DOI: 10.1515/mt-2021-2137 , , , , :
Grundlagen des selektiven Elektronenstrahlschmelzens von Reinkupfer (Dissertation, 2022) :
In‐situ Observation of γ' Phase Transformation Dynamics during Selective Laser Melting of CMSX‐4
In: Advanced Engineering Materials (2021)
ISSN: 1438-1656
DOI: 10.1002/adem.202100112 , , , , , , :
Processing 4th generation titanium aluminides via electron beam based additive manufacturing – characterization of microstructure and mechanical properties
In: Materialia 14 (2020), Art.Nr.: 100902
ISSN: 2589-1529
DOI: 10.1016/j.mtla.2020.100902 , , , :
Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology
In: Intermetallics 126 (2020), Art.Nr.: 106929
ISSN: 0966-9795
DOI: 10.1016/j.intermet.2020.106929 , , , :
Periodic open cellular Raney-Copper-Catalysts fabricated via selective electron beam melting
In: Advanced Engineering Materials (2020)
ISSN: 1438-1656
DOI: 10.1002/adem.201901524 , , , , , , , :
Additively manufactured Raney-type Copper catalyst for methanol synthesis
In: Catalysis: Science and Technology 10 (2020), S. 164-168
ISSN: 2044-4753
DOI: 10.1039/C9CY01657K , , , , , :
Selective electron beam melting of an aluminum bronze: Microstructure and mechanical properties
In: Materials Letters 238 (2019), S. 241-244
ISSN: 0167-577X
DOI: 10.1016/j.matlet.2018.12.015 , , :
Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting
In: Scripta Materialia 168 (2019), S. 124-128
ISSN: 1359-6462
DOI: 10.1016/j.scriptamat.2019.05.002 , , , , , , , , :
Processing windows for Ti-6Al-4V fabricated by selective electron beam melting with improved beam focus and different scan line spacings
In: Rapid Prototyping Journal 25 (2019), S. 665-671
ISSN: 1355-2546
DOI: 10.1108/RPJ-04-2018-0084 , , , , :
Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials
In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 762 (2019), Art.Nr.: 138098
ISSN: 0921-5093
DOI: 10.1016/j.msea.2019.138098 , , , , :
Additive manufacturing meets reaction engineering - Novel Raney® copper catalyst structures for methanol synthesis
2019 DGMK International Conference on Circular Economy - A Fresh View on Petrochemistry (Dresden, DEU, 9. Oktober 2019 - 11. Oktober 2019)
In: H. Blanke, H. Hager, A. Jess, J. A. Lercher, M. Marchionna, D. Vogt, M. Bender (Hrsg.): DGMK Tagungsbericht 2019 , , , , :
Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications
In: Additive Manufacturing 22 (2018), S. 118-126
ISSN: 2214-7810
DOI: 10.1016/j.addma.2018.05.008 , , , , , :
Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing
In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 49 (2018), S. 3781-3792
ISSN: 1073-5623
DOI: 10.1007/s11661-018-4762-5 , , , , , , :
Selective electron beam melting of a copper-chrome powder mixture
In: Materials Letters 223 (2018), S. 250-252
ISSN: 0167-577X
DOI: 10.1016/j.matlet.2018.03.194 , , , :
Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties
In: Materials Characterization (2018)
ISSN: 1044-5803
DOI: 10.1016/j.matchar.2018.04.009 , , , :
Selective Electron Beam Melting of Oxide Dispersion Strengthened Copper
In: Advanced Engineering Materials 20 (2018)
ISSN: 1438-1656
DOI: 10.1002/adem.201800068 , , :
Selektives Elektronenstrahlschmelzen der einkristallinen Ni-Basis Superlegierung CMSX-4 (Dissertation, 2018) :
Grundlagen des Selektiven Elektronenstrahlschmelzens von Titanaluminiden (Dissertation, 2018) :
Influence of the hatching strategy on consolidation during selective electron beam melting of Ti-6Al-4V
In: International Journal of Advanced Manufacturing Technology (2017), S. 1-10
ISSN: 0268-3768
DOI: 10.1007/s00170-017-0375-1 , , :
Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V
In: International Journal of Advanced Manufacturing Technology (2017)
ISSN: 0268-3768
DOI: 10.1007/s00170-016-8819-6
URL: http://link.springer.com/article/10.1007/s00170-016-8819-6 , , , , , :
Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting
In: Materials and Design 110 (2016), S. 720-727
ISSN: 0261-3069
DOI: 10.1016/j.matdes.2016.08.041 , , , , , :
Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting
In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 47 (2016), S. 1469-1480
ISSN: 1073-5623
DOI: 10.1007/s11661-015-3300-y , , :
Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4®: From columnar grains to a single crystal
13th International Symposium on Superalloys, SUPERALLOYS 2016 (Seven Springs, 11. September 2016 - 15. September 2016)
In: M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, S. Tin (Hrsg.): Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys 2016
DOI: 10.1002/9781119075646.ch37 , :
Thermal and Electrical Conductivity of 99.9% Pure Copper Processed via Selective Electron Beam Melting
In: Advanced Engineering Materials 18 (2016), S. 1661-1666
ISSN: 1438-1656
DOI: 10.1002/adem.201600078 , , , :
Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting
In: Metals 6 (2016), Art.Nr.: 258
ISSN: 2075-4701
DOI: 10.3390/met6110258 , , , , , :
Erratum to: ‘Grain structure evolution in Inconel 718 during selective electron beam melting’ (Materials Science & Engineering A (2016) 668 (180–187 (S0921509316305536) (10.1016/j.msea.2016.05.046))
In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 676 (2016)
ISSN: 0921-5093
DOI: 10.1016/j.msea.2016.09.016 , , , :
Grain structure evolution in Inconel 718 during selective electron beam melting
In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 668 (2016), S. 180-187
ISSN: 0921-5093
DOI: 10.1016/j.msea.2016.05.046 , , , :
Additive Fertigung durch Selektives Elektronenstrahlschmelzen der Nickelbasis Superlegierung IN718: Prozessfenster, Mikrostruktur und mechanische Eigenschaften (Dissertation, 2016) :
Grundlagenuntersuchungen zum selektiven Elektronenstrahlschmelzen von TiAl6V4 (Dissertation, 2016) :
Process development for the manufacturing of 99.94% pure copper via selective electron beam melting
In: Materials Letters 143 (2015), S. 298-301
ISSN: 0167-577X
DOI: 10.1016/j.matlet.2014.12.105 , , :
Influence of the Scanning Strategy on the Microstructure and Mechanical Properties in Selective Electron Beam Melting of Ti-6Al-4V
In: Advanced Engineering Materials 17 (2015), S. 1573-1578
ISSN: 1438-1656
DOI: 10.1002/adem.201400542 , , , :
Solution Heat Treatment of the Single Crystal Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting
In: Advanced Engineering Materials 17 (2015), S. 1486-1493
ISSN: 1438-1656
DOI: 10.1002/adem.201500037 , , , , , :
Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure
In: Journal of Materials Research 29 (2014), S. 1987-1996
ISSN: 0884-2914
DOI: 10.1557/jmr.2014.192 , , :
Tailoring the grain structure of IN718 during selective electron beam melting
2nd European Symposium on Superalloys and Their Applications, EUROSUPERALLOYS 2014 (Giens)
DOI: 10.1051/matecconf/20141408001 , , , :
Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting
In: Acta Materialia 76 (2014), S. 252-258
ISSN: 1359-6454
DOI: 10.1016/j.actamat.2014.05.037 , , , :
Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss
In: Intermetallics 49 (2014), S. 29-35
ISSN: 0966-9795
DOI: 10.1016/j.intermet.2014.01.004 , :
Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting
In: Connective Tissue Research 54 (2013), S. 351-360
ISSN: 0300-8207
DOI: 10.3109/03008207.2013.822864 , , , , :
Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions
In: Journal of Applied Biomaterials and Fundamental Materials 11 (2013), S. 159-166
ISSN: 2280-8000
DOI: 10.5301/JABFM.2013.10832 , , , , , , , :
Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues
In: Plastic and Reconstructive Surgery 129 (2012), S. 55e-65e
ISSN: 0032-1052
DOI: 10.1097/PRS.0b013e3182361f97 , , , , , , , , , :
Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)
In: Journal of Biomedical Materials Research Part B-Applied Biomaterials (2011), S. 313-320
ISSN: 1552-4973
DOI: 10.1002/jbm.b.31901 , , , , :
In vivo performance of selective electron beam-melted Ti-6Al-4V structures
In: Journal of Biomedical Materials Research Part A 92 (2010), S. 56-62
ISSN: 1549-3296
DOI: 10.1002/jbm.a.32337 , , , , , , , , , :
Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting
In: Acta Biomaterialia 4 (2008), S. 1536-1544
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2008.03.013 , , , , :
Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts
In: Journal of Biomedical Materials Research Part A 84 (2008), S. 1111-1119
ISSN: 1549-3296
DOI: 10.1002/jbm.a.31540 , , , , , , , , , , :
Mechanically Adapted Cellular Titanium for Bone Substitution
International Symposium on Cellular Metals for Structural and Functional Applications 2008 (Dresden) , , :
Selective electron beam melting - A novel generative manufacturing technique for cellular titanium
5th International Conference on Porous Metals and Metallic Foams, MetFoam 2007 (Montreal, QC)
URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=56549129261&origin=inward , , :
Selective electron beam melting of cellular titanium: Mechanical properties
In: Advanced Engineering Materials 10 (2008), S. 882-888
ISSN: 1438-1656
DOI: 10.1002/adem.200800137 , , :
Cellular titanium by selective electron beam melting
In: Advanced Engineering Materials 9 (2007), S. 360-364
ISSN: 1438-1656
DOI: 10.1002/adem.200700025 , , , :
Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion
In: Materialia 30 (2023), Art.Nr.: 101823
ISSN: 2589-1529
DOI: 10.1016/j.mtla.2023.101823 , , :
Impact of the acceleration voltage on the processing of γ-TiAl via electron beam powder bed fusion
In: Progress in Additive Manufacturing (2023)
ISSN: 2363-9512
DOI: 10.1007/s40964-023-00499-4 , , :
Correlation Between Structural Features and Magnetic Performance of Fe93.5Si6.5 (wt.%) Soft Magnetic Materials
In: Advanced Functional Materials (2023)
ISSN: 1616-301X
DOI: 10.1002/adfm.202308194 , , , , :
Powder sintering kinetics during electron beam based additive manufacturing
In: Powder Technology 434 (2024), Art.Nr.: 119332
ISSN: 0032-5910
DOI: 10.1016/j.powtec.2023.119332 , , :
Electron beam-based additive manufacturing of Fe-Si soft magnetic materials (Dissertation, 2024) :
Elektronenstrahlbasierte additive Fertigung von Titanaluminid-Bauteilen mit dualer Mikrostruktur (Dissertation, 2024) :